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Abstract

Recall that the radius of a compact metric space (X,dist) is given by
rad X = minge x maxye x dist(z,y). In this paper we generalize Berger’s
%-pinched rigidity theorem and show that a closed, simply connected, Rie-
mannian manifold with sectional curvature > 1 and radius > 7 is either
homeomorphic to the sphere or isometric to a compact rank-one symmetric
space.

The classical sphere theorem states that a complete, simply con-
nected Riemannian n-manifold with positive, strictly 1/4-pinched sec-
tional curvature is homeomorphic to S™ ([1], [16], and [21]). The weakly
1/4-pinched case is covered by

Berger’s Rigidity Theorem ([2]). Let M be a complete, sim-
ply connected Riemannian n-manifold with sectional curvature, 1 <
sec M < 4. Then either

(i) M is homeomorphic to S™, or
(ii) M is isometric to a compact rank one symmetric space.

The hypotheses of Berger’s Theorem imply (with a lot of work) that
the injectivity radius of M satisfies inj M > 5 ([6] or [17]). The diam-
eter therefore, also satisfies diam M > w/2, and the class of complete
Riemannian manifolds with

(x) sec > 1 and diam > 7/2
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THE RADIUS RIGIDITY THEOREM FOR MANIFOLDS

contains Berger’s class. The former class is in fact, much vaster, since
it contains, for example, metrics with arbitrarily small volume (see [3]
and Example 2.4 in [11]).

On the other hand, the set of smooth manifolds admitting metrics
satisfying (*) is nearly the same as for Berger’s class. Indeed, in [8] Gro-
moll and Grove extended Berger’s Rigidity Theorem and the Diameter
Sphere Theorem ([13]) in proving the

Diameter Rigidity Theorem. Let M be a complete, simply con-
nected Riemannian n-manifold with sectional curvature sec M > 1 and
diameter diam M > w/2. Then either

(i) M is homeomorphic to S™,
(i) M is isometric to a compact rank one symmetric space, or
(iii) M has the cohomology algebra of the Cayley Plane, CaP?.

An open question regarding this theorem is whether the possibil-
ity (iil) can be removed from the conclusion. This seems to be a very
difficult problem; however, there is a natural hypothesis that falls be-
tween those of the two rigidity theorems. Observe that the hypothesis
inj M > /2 (which is satisfied by Berger’s class) implies that given
any point z € M, there is a point y € M so that dist(z,y) > /2. This
later condition can be expressed succinctly in terms of a well known
metric invariant called the radius.

Definition 1 (Radius). Let (X, dist) be a compact metric space.
The radius of X is given by,

rad X = minmax dist(z,y).
reX yeX

(The concept of radius was invented in [26]. The name radius was first
used in. [12].)

Clearly inj M > n/2 = rad M > ©/2 = diam M > /2, suggesting
the following generalization of Berger’s Rigidity Theorem.

Radius Rigidity Theorem. Let M be a complete, simply con-
nected Riemannian n-manifold with sectional curvature sec M > 1 and
radius rad M > w /2. Then either

(i) M is homeomorphic to S™, or

(ii) M is isometric to a compact rank one symmetric space.
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A crucial step in the proof of the Diameter Rigidity Theorem is to
show that if M is not homeomorphic to S™, then there are certain points
z whose unit tangent sphere is mapped via v + exp, v onto the cut lo-
cus of z, and that this map is a Riemannian submersion with connected
fibers. Since the unit tangent sphere is isometric to the unit sphere
S™ C R**1| the classification theorem from [9] can be invoked. It states
that up to isometric equivalence the only Riemannian submersions of
Euclidean spheres (with connected fibers) are the Hopf fibrations, ex-
cept possibly for fibrations of the 15-sphere by homotopy 7-spheres. It
was shown in [8] that if the exception could be removed from the sub-
mersion theorem in [9], then (iii) can be removed from the statement
of the Diameter Rigidity Theorem (see Remark 4.4 in [8]). Although
we have not been able to remove the exception from the submersion
classification, we have proved the following results.

Main Lemma 2. Let S*(r) denote {v € R*1 | ||v|| = r}. Let
I : S13%(1) — V be a Riemannian submersion with connected, 7-
dimensional fibers, and let G be the set of points v € V such that 171 (v)
1s totally geodesic. Then G is either empty, or a totally geodesic and
isometrically embedded copy of SY(3) for some 0 <1< 8.

Given a Riemannian submersion IT : §15(1) — V, the points v such
that II~1(v) is totally geodesic will be called the good points of V.

Theorem 3. Let I : 7 < §'5(1) — V be a Riemannian submer-
sion. If there is a 4-dimensional set of good points, Gy C V and a to-
tally geodesic ST C II™Y(Gy) so that Tl|gr : S — Gy is isometrically
equivalent to the quaternionic Hopf fibration, then 1I is isometrically
equivalent to the Hopf fibration S7(%) — S*5(1) EUN S8(3).

The Riemannian manifolds with

(xx) sec M > 1, diam M > g, and nontrivial fundamental group

were completely classified in [8]. Naturally, the class with sec M > 1,
rad M > %, and nontrivial fundamental group is contained in (*). It
is not difficult to prove that this containment is proper.

Theorem 4. Let M be a closed, Riemannian n-manifold with sec-
tional curvature sec M > 1, radius rad M > %, and nontrivial funda-
mental group T'. Then either:

(i) The universal cover M of M is isometric to S™(1), and every
orbit of the action of T' is contained in a proper invariant totally
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geodesic subsphere, or

(ii) For some d > 2, M is isometric to the Zg-quotient of C P41
given by the involution

[217227"' 722d] = [Ed—{-l)"' s Z2dy —21, - - a_zd]

in homogeneous coordinates on CP?¢1,
Moreover, all such spaces have sec M > 1 and rad M > 7.

Recall ([27]) that a representation p: I' — O(n + 1) is called fixed
point free if and only if S*(1)/p(T) is a space form.

The actions of the groups in (i) are necessarily reducible; however,
it is not immediately apparent (at least to the author) exactly which
(reducible) space forms satisfy the conclusion of (i). As a partial answer
we will prove

Theorem 5. Let p: T' — O(n + 1) be a fized point free represen-

tation that decomposes as a direct sum

PLDP2 D Dok
of k > 2 irreducible representations. Then the folloing hold:

(i) A necessary condition for S™(1)/p(T') to have radius = 5 is that
pi be equivalent to p; for some i # j.

(ii) In case I' is abelian, (i) is also a sufficient condition.

(iii) If T is not abelian and 6 : T' — O(d) is a fized point free, irre-
S2d—1(1) < P
(pop)(r) ~ 2°

(iv) Ifrad S*(1)/p(I') = 5 and 0 : T —)+§)(d) is another fized point
Snre(l
BTy — 2

ducible representation, then rad

3

free representation of T', then rad

(v) There is a ko (depending on T') such that if k > ko, then
rad S™(1)/p(l') = .

, Given a smooth manifold M, the tangent and unit tangent bundles

of M will be denoted by TM and SM respectively. The unit tangent
sphere at a point z will be called S;. If V C M is a smooth submanifold,
then the normal bundle of V in M will be denoted by NV. When there
is no possibility of confusion we denote S™(1) by 5”.
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Given v € SM we let ¢, denote the unique geodesic such that
¢y(0) = v. All geodesics will be parametrized by arc length on [0, -]
unless otherwise indicated. The symbol ab will be used to denote a
minimal geodesic between ¢ and b, and the distance between a and b
will be denoted by either dist(a,b) or |ab.

For simplicity we abbreviate compact rank-one symmetric space as
CROSS.

The remainder of the paper is divided into five sections. The first
two sections contain the proof of the main lemma and a review of certain
material from [8]. The Radius Rigidity Theorem is proved in section 3
modulo Theorem 3. whose proof is given in section 4. Finally, section 5
contains the proofs of Theorems 4. and 5..

Remark. Several months after the preprint corresponding to this
paper was written, Dimitri Alekseevsky informed the author that he had
completed the classification of closed manifolds with sectional curvature
> 1, radius > 7, and nontrivial fundamental group.

1. Reflecting good points

First we review some basic facts about Riemannian submersions.
Recall that if # : M — B is a Riemannian submersion, then the
vectors tangent to the fibers are called vertical vectors, and the vectors
perpendicular to the fibers are called horizontal vectors. We denote
these two subbundles of TM by VM and H M respectively.

The fundamental tensors of a submersion were defined in [20] as
follows. For arbitrary vector fields £ and F on M the tensor T is
defined by

TeF = (Ve F°)* + (Ve F?)?,

where the superscripts h and v denote the horizontal and vertical parts
of the vectors in question. Note that the first summand is the second
fundamental form of a fiber applied to E” and F", and the second term
is the shape operator of a fiber applied to E¥ and F”.

The other fundamental tensor, A, is obtained by dualizing T, that
is, by switching all horizontal and vertical parts in the definition of T
Thus

ApF = (Vgh F?)Y + (Vo FY).

It is shown by O’Neill in [20], that all of the sectional curvatures of
M can be written in terms of A, T, VA, VT, the sectional curvatures
of B, and the intrinsic sectional curvatures of the fibers. In particular,
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he proves that if X and Y are orthonormal horizontal vector fields and
V is a unit vertical field, then we have:
Horizontal Curvature Equation

(6) K(X,Y) = K(drX,drY) — 3||AxY||?, and

Vertizontal Curvature Equation

(7) K(X,V) = ((VxT)vV,X) + | AxV|* - | Tv X |*.

We refer the reader to [20] for the statements and proofs of the
basic facts about T" and A and other basic facts and definitions about
Riemannian submersions that we will use freely and without further
mention.

Now we begin the proof of the main lemma. Let II, V, and G be as
in the main lemma.

Lemma 6.

(i) If z € G, then there is a unique point a(z) € V at mazrimal
distance from z, dist(z,a(z)) =, and a(z) is also in G.

(ii) V is Wiedersehen at  and a(z), i.e., the cut locus of z is a(z),
and the cut locus of a(z) is . Furthermore, the fibers of II are
invariant under the antipodal map, and every geodesic in V is
periodic with period .

Remark. Gromoll and Grove have proven that the fibers of any
Riemannian submersion with connected fibers of the 15-sphere are in-
variant under the antipodal map (even ones with G = 0) ([10]).

Proof. First we review the notion of

Holonomy Displacement. ([15, p. 238], also [9, p. 150]). Let «
be a geodesic in V. If we consider all of the horizontal lifts of y to S1°,
then we obtain a family of diffeomorphisms, ¥(v)s; : I (y(s)) —
I~1(y(t)) given by 9(¥)st(z) = 7:(t), where v, denotes the unique
horizontal lift of v with v,(s) = 2. If ¢ is a horizontal geodesic we will
write ¢(c) for ¥(I{c)).

Now suppose that F, = II71(z) is totally geodesic. Then all hori-
zontal geodesics emanating from F, are in a totally geodesic 7-sphere
Fy(s) at time 7/2. Hence F,(s) is also a fiber of I, and I(Fy(z)) is the
desired point a(z). This proves (i).
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Since every horizontal geodesic emanating from F, reaches Fy,) at
time 7/2, every geodesic emanating from z reaches a(z) at time /2,
and hence is minimal up to time 7/2. Thus V' is Wiedersehen at z and
by symmetry at a(z).

It follows that reflection in z is a homeomorphism of V. Hence
reflection in F} is an isometry of §'° that maps fibers to fibers. Similarly,
reflection in Fy ;) maps fibers to fibers. But the composition of the two
reflections is the antipodal map, a, of S'5. So if the composition of
reflection in z with reflection in a(z) is the identity map of V, then the
fibers are invariant under the antipodal map.

To establish this, let rz, ry(z), 75, and 7g,, be the four reflections.
Note that TPy OTF, () OTF, OTF,(,) = G0G = idgis. SO T50T4(5) 0Tz O () =
idv. The differential d(r; o 74(5))q(s) i therefore a linear isometry of
Ty(z)V whose square is the identity, and hence Ty(;)V has a basis of
eigenvectors for d(r; 074())a(z) With corresponding eigenvalues of either
1 or —1. Suppose v is a unit eigenvector whose eigenvalue is —1. Then
~v = d(Tg © To(z))a(z)? = dTz)a(z) — v- This implies that the reflection
isometry r, fixes the geodesic c_, : t — €XPg(z) —tv, Which is absurd,
since c_y(%) = z. So the only possible eigenvalue is 1, and we can
conclude that the fibers are indeed invariant under the antipodal map,
which implies immediately that every geodesic in V' is periodic with
period 7. q.e.d.

We saw in the proof above that reflection in a totally geodesic fiber
is an isometry of S'° that preserves the fibers of II. By using this fact
over and over again, we can prove

Lemma 7. Let z,a(z) € V be good points at mazimal distance. Let
z € V\{z,a(z)} be another good point, and let vy : [0,00) — V be the
unique geodesic that passes through z, z, and then a(z) so that v(0) = z.
Then y(k - dist(z, z)) is a good point for all integers k. In particular, if
dist(z, z) is an irrational multiple of m, then all points along v are good.

Given ¢ > 0, recall ([8]) that a subset A of a Riemannian manifold
is called totally c-convex if and only if any geodesic of length strictly
less than ¢ whose end points lie in A lies entirely in A.

Lemma 8. G is totally §-conves.

Proof. Let a and b be in G and suppose that dist(a,b) < 5. By
Lemma 6, there is a unique minimal geodesic v between a and b. We
will show that the holonomy displacement maps determined by «y are
isometries and hence that all of the fibers over 7y are totally geodesic.
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Let a; and ap be very close points in II~!(a), and let 77, and 3 be
the unique horizontal lifts of v with initial points a; and as respectively.
Call the end points of the 7;’s b; and by respectively. Then the ~y;’s are
both perpendicular to IT"1(b) and hence to bybs,.

Now consider the two triangles A(bq,a1,a9) and A(by,by,a5), and
note that <(b1,a1,a9) = <(by,b9,a9) = 12[ and |a1b1| = |agbe| = labl.
Since the two triangles also share the common side bjay and all distances
can be assumed to be < %, the remaining sides ajas and b1bs must be
of equal length. This shows that the holonomy displacement map of
7 that takes II=!(a) to II"!(b) is a local isometry. Since it is also a
diffeomorphism, it is a global isometry.

Now consider the mid point ¢ of y, and for s = 1, 2 let ¢; the lift of c on
that lies on v;. Then |agca| = |becal, |aia2| = |b1ba], and <(a1,a9,c2) =
<I(02,b2,b1) = %, 50

laica| = |brcal.

Combining this with |a1c1| = |e1b1| = 2]a1b1| yields

<(a1,c1,¢2) = <«(b1, c1,¢2) = 7,

and a similar argument shows

ag,cg,¢1) = <(b2, c,01) =

So we can repeat the argument of the proceeding paragraph and con-
clude that |cico| = |a1a2| = |b1b2|, and hence that the holonomy dis-
placement map of y that takes IT"!(a) to II"!(c) is an isometry.

Since we can repeat the above procedure as often as we like, the set
of good points on -y must be dense. On the other hand, T' = 0 is a closed
condition, so every point on 7y must be good. g.e.d.

It follows from Lemma 8 and [5] that G is a topological manifold
with (possibly empty) boundary and smooth totally geodesic interior.
By Lemma 7, G = 0, and by Lemma 6, G is a topological sphere. The
isometry type of G is therefore determined by

Lemma 9. If v : [0,7] — V is a geodesic whose image consists
entirely of good points, then all radial sectional curvatures of V along v
are constant and equal to 4.

Proof. Let 4 be a horizontal lift of y to S1%. Let X and X denote
the tangent fields to v and 4 respectively, and let V be a vertical unit
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field along ¥ so that (V3V)” = 0. Then, using the equation for the
vertizontal curvatures, we find that K(X,V) along 7 is,

(12) 1=K(X,V)
= ((ViTWV, X) + | AgVIP = |1 Tv X|* = A V%

It follows from (12) that

(13)
the map v — Azv from VS to 5™ N X+ is bijective.

Combining this and (12) we can show that
(14) Ayl =1 for all unit vectors y € HS™ N XL,

Indeed, if (A;y,v) were larger than 1 for some unit vector » € VS 15,
then we would have |(A;v,y)| = [{v, Azy)| > 1, contrary to (12). On
the other hand, by (12) and (13), y = A;v for some unit vector v €
VS, thus [{(Azy,v)] = [{y, Azv)| =1, and ||Azyll > 1 as well.

Let Y be a unit field along <y that is perpendicular to X, and let 12
denote the horizontal lift of Y. Then it follows from (14) that

K(X,)Y)=K(X,Y)+3|AzY|?=1+3+1=4.

2. Review of the Diameter Rigidity Theorem

If M satisfies the hypotheses of the Radius Rigidity Theorem, then
M also satisfies the hypotheses of the Diameter Rigidity Theorem, so
the only way M can fail to satisfy the conclusion of the Radius Rigidity
Theorem is if it has the cohomology algebra of CaP?. We assume
throughout sections 2 and 3 that sec M > 1, Rad M > /2, m (M) =
{e}, and H*(M) = H*(CaP?), and we attempt to show that M is
isometric to CaP?.

By the Diameter Sphere Theorem ([13]), diam M = n/2. We would
like to focus on this property for awhile; so let M be a Riemannian
n-manifold with sec M > 1, 7r1(M) =~ {e}, and diam M = /2, that
is not homeomorphic to S™. Many basic aspects of the geometry of M
can be described in terms of so called dual sets ([8]). (Cf. also [23], [24],
and [25].)
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Definition 10 (Dual Sets). For any subset B C M, the dual set
of B is

B' = {z € M | dist(z, B) = n/2}.

The following properties of dual sets were observed in [8] (cf. also
(23], [24], and [25]):

(i) B’ is totally w-convex.
(i) B C B".
(iii) If A C B, then A’ > B'.
(iv) B' = B".

It follows from (i) and [5] that B is a topological manifold with
(possibly empty) boundary and smooth, totally geodesic interior.

If we start with a set B so that B’ # 0 and set A = B’, then
A= (A"Y. Thus

A={z € M|dist(z,A") = 7/2} and A’ = {z € M | dist(z, A) = 7/2},

and A and A’ are called a dual pair.

The proof in [8] proceeds from this point to use comparison theory
and other geometric and topological tools to argue that the geometry of
M is more and more like the geometry of a CROSS. For example, it is
shown that 04 = A" = 0, that cutlocus(4) = A’ and cutlocus(4’) = A4,
and that for any p € A the map II, : UNA, — A’ from the unit nor-
mal sphere to A at p to A’ given by II,(u) = exp(Zu) is a Riemannian
submersion with connected fibers. This allows them to apply the classi-
fication theorem in [9] and conclude that II, is isometrically equivalent
to a Hopf fibration (except possibly if the fibers are 7-dimensional). The
proof is completed with further comparison arguments. The exception
to the conclusion is accounted for by the fact that the classification in
[9] is not quite complete. It leaves open the possibility of nonstandard
Riemannian submersions of the 15-sphere by homotopy 7-spheres. On
the other hand, it is possible to prove that this is the only obstruction.

Proposition 11. If M has a dual pair (A, A') such that one of the
submersions I, is isometrically equivalent to a Hopf fibration, then M
is isometric to a CROSS.

In the course of proving Proposition 11 we will use
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Lemma 12. The group of holonomy displacement maps for the Hopf
fibration Iy, : SY5 —s S® that take a fiber to itself contains a subgroup
that is isomorphic to SO(8).

Proof of Lemma 12. Let F and G be any fibers. Let rp denote
reflection in F, and let v be a minimal geodesic between I, (F) and
IIn(G). Then the two maps 77 and ¥(Y)o2dist(m, (F),m,(c)) from G to
rr(G) coincide.

By the proof of Lemma 6, rr is a symmetry of I, and covers the
isometry, rp(r), given by reflection of S8(3) in II(F). We claim that
the set of reflections in points of S® generates SO(9). To see this,
let {e1,e2,... ,e9} be an orthonormal basis for R’ and observe that if
v,w € Span(ey,e2)NSE, then 1,07y, is the identity on Span{es,... ,eq},
and by choosing v and w appropriately, 7, o 7, can be any preassigned
orientation preserving isometry of Span{ei,es}. Therefore the group
generated by reflections in points of S® can act as any preassigned rota-
tion on any great circle while fixing the orthogonal complement of the
circle, and therefore is SO(9).

It was shown in [14] that the group of symmetries of I, is isomorphic
to Spin(9), acting as follows:

(i) Any orientation preserving isometry of $8(3) lifts to a symmetry
g of I, and

(ii) Given any such g there is exactly one other symmetry, antipodal —
map o g, which induces the same map on S8.

The antipodalmap : F — F, can also be viewed as the restriction
T A(F)|F where A(F) is the fiber such that dist(F, A(F')) = 5. Therefore
the restriction to F' of any symmetry of II, which preserves F' can be
realized as a holonomy displacement map for II;. On the other hand,
Proposition 7.10 in [14] asserts that the group of symmetries of Il that
preserve F' contains a subgroup isomorphic to SO(8). Therefore the
group of of holonomy displacement maps for I, that take F to itself
contains a subgroup isomorphic to SO(8). q.e.d.

Proof of Proposition 11.

By the Diameter Rigidity Theorem, we may assume that H (M ) =
H*(CaP?). Say p € A, and II, is isometrically equivalent to a Hopf
fibration. Then A’ is isometric to a CROSS, P™(K).

First suppose that A = {p}. Choose pg € CaP? and an equivalence
t : S, — Sp, between II, and II,,. Extend . to a linear isometry
t:TM, — TCaPZ . Then the map f = exp,, ot 0 exp,' : M\{p} —
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CaP?\{py}' extends to a well defined homeomorphism f : M — CaP?.
Moreover, f is an isometry, provided {z}' is isometric to S8(3) for all
z € A'. Indeed, knowing that {z}’ is isometric to S8(2) would tell us
that df|r(;) is an isometry (whose image is T{f(z)} ) On the other
hand it follows from the proofs of 3.1 and 3.6 in [8] that df |y} is an
isometry whose image is N{f(z)}.

Since A’ is isometric to $8(3), {z}'N A’ is a singleton and {z}" = {z}
for all z € A'. Therefore ({:1;} {a:} ) is a dual pair, and it is enough to
show that the Riemannian submersion II, : S, — {z}’ is standard
or equivalently (by the main theorem in [22]) that the fibers of II, are
totally geodesic

Set a(z) = {zr} N A. Then I;(a(z)) = SA, and I (p) =
S{a(z)}, are both totally geodesic. It will follow that all of the fibers
of II; are totally geodesic if we can show that all of the holonomy dis-
placement maps for horizontal geodesics in S, emanating from SA/, are
isometries.

If ¢ is such a geodesic, and v is a unit vertical vector at ¢(0), then
d(c)o,:(v) = J(t) where J is the Jacobi field along ¢ with initial condi-
tions

(18) J(0) = v and J'(0) = Ay + Tué(0)

(cf [9, p- 150]). Since c(0) is in a totally geodesic fiber, the initial
conditions for J simplify to

(19) J(0) = v and J'(0) = Ag()v-
Therefore (J'(0), J(0)) = 0, so
(20) J(t) = costP(J(0)) + sintP,(J'(0)),

where for z € T(SM,;)C(O), Pi(z) is the parallel image of z along ¢ at
c(t). It will follow that all of the ¥(c)s+’s are isometries provided we
can show that ||Ayq)v|| = 1 for all unit vertical vectors v at c(0).

Let M, : TM,; — TM,; denote the map given by multiplication
by ¢, and let S(z,r) = {y € M | dist(z,y) = Z}. The proof in [8)
that II, is a Riemannian submersion also shows that the map II, =
exp, oMz o expy 1. S(z,r) — {z}' is a Riemannian submersion if
we multiply the intrinsic metric on S(z,r) by ﬁ Given a vector
y € S{z}/ a(z) @nd a vector v € SA alz)" Consider the hinge (cy, ¢y).
The hinge angle is T and dist(cy(5),cy(t)) = 5 for all t. Therefore (as
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pointed out in [8]) (cy,¢,) is spanned by a totally geodesic surface Sy,
of constant curvature 1.

Let Y denote the tangent field of ¢,. For a given point c,(s) along ¢y,
let 75 be the minimal geodesic in Sy, from z to ¢y(s). Then the Jacobi
field, J, along 7ys with J(0) = 0 and J(%) = Y (s) is J(t) = sintP(Y (s))
where P, : TM%(%) — TM% (z) is parallel transport along ;. It follows
from the proof of 3.6 in (8] that J(¢) is horizontal for II¢, and it is clear
that dII;(J(t)) = Y(s). So J(t) is the horizontal lift of Y (s) with respect
I1; at y,(t). Allowing v to vary over all vectors in SA;( z) We see how to
find all horizontal lifts of Y for all of the II,’s.

Let z € S{:n}fl( ») be perpendicular to y and let Y (resp. Z) be the
vector field whose value at a point in ¢ € S(z,r) NI (c,) (resp. a point
in S(z,7) NI 1(c,)) is the horizontal lift of Y (resp Z) with respect to
1I,.

Let 3, be the unit radial field emanating from 2. Then using the
fact that ¥ and 9, (resp. Z and d,) span a totally geodesic surface of
constant curvature 1 it can be shown that

V0r = cot rY and V 0r = cot rZ.

Thus if we extend ¥ and Z to vector fields everywhere tangent to the
metric spheres about z, we find that

(Vg Z,0)a = —(Z,V ) |a = 0.

Therefore using the Gauss equation and the O’Neil’s equation for
horizontal curvatures we get

seCM(f’, Z)IA’nS(fc,r) =3@CS(a:,r)(Y, Z) _ cot2r
. V' 7 2
:Sin2 Tsecshln‘s(xﬂ')(y’ Z) —cotr

1
(21) = (seC{x}/ (y,2) — 3l A% Z)|% = cos?r)
Sln
1 0 &2 r 52 2
=sin2r(1 + 3”A}~,0, Zol|* — 3||A}~,Z|| — cos” 1)
=Sin2 T+ 3(”1‘127020”2 — 142 Z1?)
sin?r ’

where we have adopted the conventions that A° is the A-tensor of IL,,
A" is the A-tensor of IT,, Yy = d(My cexp; )Y, Zo = d(My o expy HYZ,
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and - S(z,r) is the space obtained from S(z,r) by scaling the intrinsic
metric by a factor of =
Note that

Sll’l T

(22) (4520 = (17, 210 = (%0, Zo]") = (42, ).
The second equality is a consequence of the fact that d(M, o exp;!)
maps horizontal vectors to horizontal vectors, and vertical Vectors to
vertical vectors.

It follows from (22) that the difference between the two A-tensor
terms on the right-hand side of (21) is due entirely to the dilation of
the map dM 10 exp, 1 X on vertical vectors. (The map is an isometry

on horizontal vectors.) The vertical vectors along A’ are tangent to A’,
which is isometric to S8(%); so the dilation (with respect to the metric
on S(z,r) scaled by ﬁ;) of the vertical vectors is Therefore the
right-hand side of (21) is

COS T

) 0 2 2

sin“r + 3|| A}, Z, 1—cos*r

( || YP 20H( ) -1 3”! Z0”2
sin”r

In particular, the sectional curvature, secM(f’,Z), is independent
of the base point. There was nothing special in the above argument
about the fixed point z € A’; so it shows that the sectional curvature of
planes normal to A’ is invariant under parallel transport along broken
geodesics in A'.

The normal holonomy of A’ was described in [8] in the following
manner. Let u € N A; be a normal vector, and let v in A’ be a geodesic
with v(0) = ¢. Then arguing as on page 645 we find a totally geodesic
surface, Sy, of constant curvature 1 which spans the hinge (c,,7). The
parallel image of u at y(¢) is the initial tangent vector of the minimal
segment y(t)p, from 7(t) to p along S, . The set of negatives of final
tangent vectors,

{—1(Opu(3) |t Y,

of these geodesics determines a geodesic ¥ in Sp, and from 3.6 in [8]
we see that ¥ is a horizontal lift of y. Thus the map u — —¢u(5)
between UN A’ and S, is an equivalence of S7-bundles over A’, which is
equivariant with respect to the two types of holonomy maps determined
by 7 (the 1)(7)’s in Sp and the parallel transport in N A"). But by Lemma
12 the group of holonomy displacement maps for I, that take a fiber to



648 FREDERICK WILHELM

itself contains a subgroup that is isomorphic to SO(8). It follows that
the normal sectional curvatures of A’ are constant.

Returning to our fixed point z € A’ and applying the Horizontal
Curvature Equation we see that there is some constant ¢ so that

||Agz|| =c

for all orthonormal, horizontal vectors, ¥, z, along I !(a(z)). Arguing
as in the proof of Lemma 9 we see that

||Agv|| =c

for all unit horizontal y along II;!(a(x)) and all unit vertical v along
;1 (a(x)).

Applying equations (19) and (20) we get that the differentials of any
unit vertical v along II;!(a(z)) under the holonomy displacement maps
for a horizontal geodesic ¢, emanating from the foot point of v are given
by the Jacobi field

Juy(t) = costPy(v) +sin tPt(Agv)

along cy. Substituting in the value ¢t = 7 we get || Ju4(5)ll = c for all
possible choices of v and y. This implies that the map ¥(cy)o,z is a
dilation by a factor of c. On the other hand, II;(a(z)) = SA/, and
$(cy)o,z (SA;) = S{a(z)}; are both isometric to S7, so ¢ = 1, and
it follows that the t(cy)s;’s are isometries for all horizontal geodesics,
¢y, emanating from II;!(a(z)). Therefore II, is standard, and we have
dispensed with the case A = point.

Now consider the case A # {p}. Since A’ is isometric to P™(K), the
dual set B (in A') of any singleton {z} C A’ is isometric to P™~1(K),
and the double dual of {z} (in M) is again {z}. It follows from the
convexity properties of A’ that the fibers of the submersion SA, — B
are also fibers of the submersion Il : SM; — {z}', and the dimension
of these fibers is < 7 because dim A’ < 16.

Therefore the submersion II; is equivalent to a Hopf fibration (with
1- or 3-dimensional fibers), and by (8, p. 236] N is isometric to a CROSS.

g.e.d.

We now restrict our attention to the possibly exceptional manifold

M.

Proposition 13.
(i) The set of dual pairs covers M.
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(ii) Every dual pair consists of a singleton and a set that is homeo-
morphic to S8.

(iii) If (p,V) and (g, W) are distinct dual pairs, then VNW is a point.

Proof. (i) is an immediate consequence of properties (ii) and (iv) of
dual sets and the fact that rad M = /2.

To prove (ii) first note that if (p,V) is a dual pair and V is not
8-dimensional, then the Riemannian submersion II, : SM, — V is
isometrically equivalent to a Hopf fibration, and M is isometric to some
CROSS other than CaP?. If V is 8-dimensional, then the fibers of I,
are homotopy 7-spheres (see Theorem 5.1 in [4]). It follows from the
long exact homotopy sequence of the fibration II, that V is a homotopy
8-sphere, and hence a topological 8-sphere. Finally, if there is a dual
pair (A, A") so that neither A nor A’ is a point, then for all p € A,
1 < dim UNA, < 14, and the submersion II, is equivalent to a Hopf
fibration.

To prove (iii) observe that since sec M > 0 and dim V + dim W =
- dim M, a Synge Theorem type of argument shows that VW # @ (see
(7] and also Proposition 1.4 in [8]). Next observe that VN W = {p, ¢},
so (VNW,(VNW)) is a dual pair. By (ii), one of these dual sets is a
point. Since p,g € (V N W), we conclude that (V NW) is a point.

g.e.d.

If (p,V) is a dual pair, then we will (optimistically) refer to V as a
Cayley line. This name is partially justified by the fact that once we
have proven that M is isometric to CaP? we will know that all of these
V’s are isometric to CaP!.

3. Intersecting cayley lines

In this section we prove the Radius Rigidity Theorem modulo The-
orem 3.

If (p, V) is a dual pair, then we have seen that it is enough to show
that the submersion II, : S, — V is isometrically equivalent to the
Hopf fibration §7 — S — S8, This holds if its fibers are totally
geodesic (see [22]). Roughly speaking, the strategy of our proof is to
find dual pairs (p, V') so that I, contains more and more totally geodesic
fibers. Our method for finding totally geodesic fibers will be to find more
and more “good points” in M.

Definition 14 (Good Point). If (p,V) is a dual pair, then we
shall call a point z € V good if and only if IL; 1(z) is totally geodesic.
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A point m € M will be called good if and only if m is a good point of
W for some Cayley line W C M. The sets of good points in V and M
will be denoted by Gy and G respectively.

The fact that G s is rather large is a consequence of Proposition 13
and the next result.

Proposition 15. Let (p,V) be a dual pair.
(i) A point x € V is good if and only if there is a Cayley line W so
that VN W = {z}.

(ii) Gar is closed. In fact, m € Gyr if and only if there are points
z,y € M so that dist(x,m) = dist(m,y) = dist(x,y) = L.

Remark. Gromoll and Grove were also aware of the fact that
G # 0 (10).

Proof. 1If there is a dual pair (z, W) so that W NV = {z}, then
p and z are distinct points in {z}', so {z}’ is a Cayley line and hence
intersects V' at a single point y. Since p and z are distinct points of {y}’,
{y} is a Cayley line. It follows that the set of minimal geodesics from p
to z is contained in {y}". Thus IL; 1(z) is contained in the unit tangent
sphere S{y}, to {y}’ at p. But since both of these sets are homotopy
7-spheres they must coincide. Since S{y}, is totally geodesic in SM,,
I, !(z) is as well. This proves the “if” part of (i).

On the other hand, if z € Gy, then by Lemma 6 there is a unique
point a(z) € V so that dist(x,a(x)) = Z. Since z,p € {a(z)}!, {a(z)}’
is a Cayley line. By Proposition 13, z = {a(z)} N V. This proves the
“only if” part of (i). Since dist(z,a(z)) = dist(a(z),p) = dist(p,x) = T,
it also proves the “only if” part of (ii).

To prove the “if” part of (ii) note that z,y € {m}, m,y € {z}', and
m,z € {y}. So {m}', {z}, and {y}' are all Cayley lines, and m, for
example, is good since {m} = {z} N {y}. q.e.d.

The Radius Rigidity Theorem would follow if we could show that
there is a Cayley line V' so that every point in V is good. In part, we
will do this by finding Cayley lines with good points in sets that are
isometric to spheres of constant curvature 4 of progressively higher and
higher dimension.

Since each point in M lies on at least one Cayley line, we can cer-
tainly find six distinct lines W, V3, Vs, ..., V5. It could be that the Vi’s
intersect W at only 1 or 2 points, but if this is the case, then at least
three of them (say Vi, Vi, and V3) intersect W at the same point, z.
Then {z}' is a Cayley line and the points {z} N Vi, {z} N V2, and
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{z}' N'V3 must all be distinct. By the main lemma dim Gy > 1. On
the other hand if the V;’s intersect W in three or more points, then it
follows that dimGw > 1. So we can find a Cayley line V such that
dim GV Z 1.

To prove the Radius Rigidity Theorem we argue by contradiction.
From the main lemma and Propositions 13 and 15 it follows that the
set of good points in each Cayley line is isometric to S*(3) for some
0 <k <8 Let V be a Cayley line whose set of good points has
maximal dimension, d. We have seen that d > 1, and if the Radius
Rigidity Theorem were false, then by Proposition 11 we would know
d < 7. Consider the configuration C consisting of all Cayley lines of the
following types:

type 1 V,

type 2 All the Cayley lines between the good points of V and V’,

type 3 For each W of type 2 we also include all of the Cayley lines

between each of the good points of W and W' that are
neither of type 1 nor of type 2.
We point out that if W is of type 2, then W’ is a good point of V, and
if U is a line of type 3 between a good point of W and W', then U’ is a
good point of W.

Suppose we could find a Cayley line Z that is not included in the

configuration above. Then either,

ZNV & Gy or
ZNV e Gy.

But neither of these is possible. The first can not occur because Gy
consists of all of the good points of V. On the other hand, if ZNV €
Gv, then (ZN V) is a line of type 2, and Z is a Cayley line between
(ZNV) and ZNV, implying that Z is of type 1, 2, or 3, a contradiction.
Therefore,

(26) C contains all of the lines of M.

Next we prove

Lemma 16. We may assume that dim Gy = d for every line U in
the configuration.

Proof. We prove this in a step by step manner.
We know that there is at least one line of type 3, since otherwise the
configuration would only be 8-dimensional in a neighborhood of a bad

651



652 FREDERICK WILHELM

point of V' and hence would not cover M. Since all of the lines of type
2 intersect at V', they must intersect at distinct points of each line of
type 3. Thus dim Gy > 1 for all lines of type 3, and if U is a line of
type 3, then there are infinitely many lines between U and U’ € Wy,
where Wy is a line of type 2. Since all of these lines intersect at U’ they
must intersect each line of type 2 (other than W) at infinitely many
places. Therefore dim Gy > 1 for all lines W # Wj of type 2. Since
the set of all good points in M is closed, dim Gy, > 1 as well.

For each point v € Gy, the set L, = {lines U in the configuration
| v € U} can be topologized by declaring that it is homeomorphic to
G (yy- We will show that for each v € Gy,

LS = {lines U in L, | dim Gy = d}

is both closed and open. Since V € L% and Uyeg, Ly = C, it will follow
that dim Gy = d for every line in the configuration. Let {U;} be a
sequence in L¢ which is converging to a line U in L,. Then by passing
to a subsequence if necessary, we may assume that {Gy,} converges (in
the classical Hausdorff topology) to some subset G of U (cf Theorem
4.2 in [18]). By the main lemma, G is isometric to S’d(%), and by
Proposition 15, G C Gy. In fact G = Gy by the maximality of d. So
L¢ is closed. To see that it is open, let U in L and let W € L, be
close to U. Consider the set L(U,U’) of lines between U and U’. Each
u € Gy is on exactly one line Z, € L(U,U’), and the map Gy — Gw
given by u — Z, N W preserves distances up to small additive error.
It follows from the main lemma and the maximality of d that if W was
originally chosen to be sufficiently close to U, then Gy is isometric to
54(1). qed.
Consider the following subset of T'M:

TC|v(n/2) ={v e TM|g, | lv]| £ 7/2 and v is tangent
to a line in the configuration}.

If the Radius Rigidity Theorem is false, then exp : TC|y(3) — M is
a surjective Lipshitz map, M\Gu and exp ’;é'lv(%)(M\GM) are open,
dense sets, and exp : exp |’:l_‘é'|v(%)(M\GM) — M\Gjs is a smooth
bijection. Indeed, exp is surjective since the configuration has to cover
M, and exp has unique preimages on M\Gjs. The set M\G s is open
and dense, since Gp; consists of points of the form U’ where U is a
line in the configuration, and the points of this form all lie in proper
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subspheres of lines of type 2. exp Ii_“é'lv(l)(M\GM) is open and dense
2
for similar reasons.

The fact that exp is surjective and Lipshitz yields a contradiction in
case d < 3 since it implies that dimgge,s M < dimgaus TC|v(7/2) <
3+3+8=14.

The case 5 < d < 7 is also easy to eliminate since in this case
dimTCly(3) > 5+5+8 > 16 = dim M. So it is impossible for
exp|TC|v(%) to be a smooth bijection from the open dense set

exp ‘;é.lv(%)(M\GM) to the open dense set M\G ;.

The case d = 4 is also not possible, but it is much harder to rule
out. First we prove

Proposition 17. If d = 4, then Gy is o totally geodesic subman-
ifold of M that is isometric to HP? with its canonical metric with
1< sec HP? < 4.

Proof. For any line U in C we can let U play the role of V
and define a configuration Cy consisting of lines of type ly,2y, and
3y in a way analogous to what we did on page 649. Of course as-
sertion (26) is valid for each Cy, and for each such configuration Cy,
Gur = Uy a line of type 2u Gw, since otherwise there would be a line
not included in Cy.

Now let u and w be two points in Gjs. Since w must lie on a line
of type 2(,y,, there is a Cayley line Z containing u and w. Since Gz
is isometric to 5*(3), we can find a geodesic in Gz between u and w.
Using Lemma 6 and the fact that Z is totally #-convex we see that if
dist(u,w) < %, then the geodesic constructed above is the unique min-
imal geodesic in M between u and w. This shows that Gy is totally
Z-convex and hence, by [5], a topological manifold with boundary and
smooth, totally geodesic interior. But the above construction also in-
dicates that every geodesic in Gy can be indefinitely prolonged (to a
geodesic in G ). Therefore G pr = 0. Thus G with its intrinsic met-
ric is a Riemannian manifold with sectional curvature > 1 and diameter
= 7. The proposition follows by analyzing the structure of the dual sets
in Gy and applying the classification theorem in [8]. g.ed.

It follows that the restriction of Iy to (SGar)v is a Riemannian
submersion that is isometrically equivalent to the quaternionic Hopf
fibration S3(1) < S7(1) — S*(3). By combining this with Theorem 3,
we see that the case d = 4 is also impossible.
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4. Comparing submersions

In this section we prove Theorem 3. Although the argument is very
technical, there is an over all strategy: to show, via boot strapping, that
II is more and more similar to the Hopf fibration S7(3) — S'%(1) LN
S8 (%) This similarity will manifest itself in various forms: common
values of the two submersions on larger and larger subsets of S5, com-
mon values of the A and T tensors of the two submersions on larger
and larger subsets of T'S'® @ T'S'®, and common values of the differen-
tials of the various holonomy displacement maps associated to the two
submersions on more and more vectors.

With two notable exceptions, the arguments are elementary. The
exceptions are in the proof of Assertion 1 (p. 654) and the statement
of Assertion 2 (p. 655) where we appeal to the classification in [9] to
conclude that certain Riemannian submersions §7 — S* are standard.

Proof. Fix an embedding of H into Ca. Let Sf denote the subset
of S5 all of whose coordinates are quaternion, O(Sg) the opposite 7-
sphere, I, : S — 5% the Hopf fibration defined as in [14], S7 the
given copy of S” C II"}(Gy), and S/ the opposite 7-sphere in S5.

Assertion 1. image H|S7 Gy, g7 S§ —» Gy is a Riemannian
submersion, and we may assume w1thout loss of generality that

’ SZ = S]HI’
- 85 = O(S),

~Y(Gy) = II; (T4 (SE)), and
Mg-1ay) = Hh|n ML (SR)"

Proof of Assertion 1. Let a : Gy —> Gy be the antipodal map.
Given v € Gy, let O, (H{E} (v)) denote the totally geodesic 3-sphere in

II~!(v) which is at distance I from 1'[|S7( v), and let Oy (1'[|S7( a(v)))

be the totally geodesic 3-sphere in II™ 1(a(v)) which is at distance §
from 1'[|S7( a(v)). Then

(29) SZ = O’v(HIE‘;/l (U)) * Oa(v) (nggl (a(v)))y

ie, S7 is the join (by geodesics in S') of O,(I|5;(v)) and
Oq(v) (H|§71 (a(v))). Indeed, let z be any point in

Ou(IT[5} (0)) * Oy (IT/5 (a(0))),
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and let y be any point in II [571 (v) Then z lies on a geodesic of length 7
which passes through O, (II|3; 57 ) and Oy (|7 57 (v))). Let v be the

point on this geodesic which is also in Oy (TI| 47 !(v)). Then dist(v,y) = &
and <(vy,vz) = 5. Therefore dist(z,y) = %.GA similar argument shows
that dist(z, z) = 5 for points z € H|§71( (v)). Finally if 2 is an arbitrary
pomt in S7, then z lies on a geodesic v of length & with end points in
I s7 }(v) and | s }(a(v)). Since the end points of  are both at distance
g from z, all of v (and z in particular) is at distance 7 from . Therefore
01,(1'I|§71 (v)) * Og() (1'I|§71 (a(v))) C 57, but both are 7-spheres, so the
other containment must hold as well.

It follows from (18) that the holonomy displacement maps given by
the geodesics in Gy are isometries (cf 3.3 in [15]). They must also
preserve SI. Thus if ¢ : [0,-) — Gy is a geodesic with c(0) = v,
then using (29) we see that the 1(c)’s must preserve Sf. It follows
from this and (29) that II(S]) = Gy. Furthermore, H|SZ : S — Gy
is a Riemannian submersion along 01,(1'I|§71 (v)). But (29) is valid for
all v € Gy, so II| s is a Riemannian submersion everywhere. By the
classification theorem in [9], 11| s7 is equivalent to the quaternionic Hopf
fibration.

Let

(57,10) L+ (S7,1) L5 (ST, 1) 5 (O(ST), TT)

be equivalences of submersions. Then the direct sum of f and Eo fog
is an isometry of > whose restriction to II"!(Gy) is an equivalence of
the fibrations II|;-1(¢, ) and Hh'ngl(nh(sgﬂ)) that maps S7 to S% and S/
to O(S%). So Assertion 1 is proven.

For the remainder of the proof we make the assumptions allowed by
Assertion 1, but we continue to use the old notation (S7, SJ ect.) for
the sets associated to II.

Fix some v € Gy, and let S7b = ng}(v * H|§71(a(v))

Assertion 2.  The restriction of II to S7 o,p 18 & Riemannian sub-
mersion onto its image with 3-dimensional ﬁbers and hence (by [9]) is
isometrically equivalent to the quaternionic Hopf fibration.

It will follow from the proof of Assertion 2 that II| ST, is also a
Riemannian submersion. Thus proving Assertion 2 is cons1stent with
the overall strategy of showing that IT and II; are more and more a like.

Proof of Assertion 2. We will denote an arbitrary horizontal
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geodesic from ng} (v) to ng} (a(v)) by a5, and an arbitrary horizontal
a b
geodesic from H|§71 (v) to ng} (a(v)) by vYa,a-
First note that any geodesic 7,3 and any geodesic v,, With com-
mon initial point make angle 7 with each other. Therefore the holonomy

displacement maps for the former type of geodesics must leave SZ p In-
variant. This also shows that II| g , 152 Riemannian submersion along

Migr (v)-

We can also show that the intersections of the fibers of II with SZ’,,
are either empty or diffeomorphic to S3. This is clear for the fibers
O !(v) and IT~1(a(v)). Any point z € Sz’b\[II“l(v) UTT Y (a(v))] lies
on a unique horizontal geodesic -y, between HlEZI (v) and H|;g1 (a(v)).
Say x = 7,(t), and recall (p. 639) that 1(7,)s,: denotes the holonomy
displacement maps for v, 5. Then we have seen that 1/J(’)’a,b)0,t(H|§7l (v))
- SZ’b. On the other hand, the images of all other points of H_l(va) un-

der ¥(74)0,t lie on horizontal geodesics from II~!(v) to II7!(a(v)) that
do not begin on H|§71(v) and hence can not belong to SZ,b. Therefore

-1 (I(x)) N ST, = (Va0 (57 (v) = S°.

Let VSZ,b denote the intersection of VS® and TS;/,b. Let Hyp be
the set of vectors in TSZ,b which are perpendicular to VSZ’b. Then the
differential of IT is injective on H,; and hence maps it onto TII(SZ’b),
so the restriction of II to Sz,b is a submersion. If we knew that H,,
were a subset of 7S5, then II| 47 , would have to be Riemannian, and
Assertion 2 would be proven. "

To obtain this conclusion about H,; (and also to complete the proof
of Theorem 3.) we shift our efforts from comparing IT and I1;, on subsets
of M to comparing the A tensors, the T tensors, and the differentials of
various holonomy displacement maps associated to the two submersions.

Let X,, and X, denote extensions of the tangent fields of v,,
and 7,4 to basic horizontal fields, and for each real number ¢ we let
Xoa(t) = Yaa(t) and Xgp(t) = Hap(t). It follows from the proof of
Lemma 9 that

(30) Ax, vl =1 and [|Ax, ,yll = 1

for all unit v € VSl5]H-1(H(%,a)) and all unit vectors

y € HSP|n-1(11(ye,0))
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which are perpendicular to X, ,. It follows from Assertion 1 that
(31) Ax, v =A%, v,

where A" denotes the A tensor for the Hopf fibration and v is an arbi-
trary vector in VS|;- YM{ve.0))-

Now suppose that v is a unit vector in VS3|- (va,(0))) NV S
and

(32) Ax,v=A% v=Xgp
Then

(33)
<AXa,bU’X0«,a) = (‘U, AXa,bXa,a)

=(v, Ax, , Xap) = —(Ax, v, Xap) = —1.
So in particular
(34) AXa,bXa,a - ’U7

and a calculation similar to (33) shows

(33%) (A%, ,vs Xa) = —1 and A% Xoo=v.
Therefore,
(35) AXa,bXa,a = A’}z{a,bXa,a

along II™* (I1(,,6(0)))-

It follows from (33%) that Ah U = —Ya,e- We would like to con-
clude that the same equation holds for A, so we have to verify that the
components of A; ,)v in all directions perpendicular to ,,4(0) are 0.

To do this we recall that (with the opposite sign convention) one of
O’Neill’s “fundamental equations of a submersion” is

(R(X, V)Y, W) =— ((VxT)vW,Y) — (Vv A)xY, W)
+(Tv X, TwY) — (AxV, Ay W)

where X and Y are horizontal fields and V and W are vertical ones.
Letting X = X454, Y = X, 4, setting V = W, and evaluating at t = 0
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we find

0=—(Vv(Ax,.Xap): V) + (Avy X, o Xap, V)
+(Ax,,VvXep, V) — (Ax,.V, Ax,, V)
= — (Vv (Ax, . Xap), V) — (A%, (Vx.. V)" V)
(36) +{Ax, . (Vx,, V)" V) = (Ax,.V, Ax,, V)
=—(Vv(Ax, . Xep), V) + (Ax, .V, Ax,, V)
—(Ax,,V, Ax, . V) — (Ax, .V, Ax,,V)
== (Vv(Ax, o Xop): V) — (4x.. Vi Ax,, V).

Equation (36) is also valid with A replaced by A”. But (A’)‘(a Vs A’}(a V)
=050 (Vy (4% X,3),V) =0. Combining this with (35) we have

a

(Vv (Ax, o Xap) Vln-1(m(re 4 0)) = 05

and therefore
(37) (AXa,aV’ AXa,bV)’H_I(H('Ya,b(O))) = 0

forallV € V8|1 (qyy). Ifv € NST [, ,(0)NVS'?, then from equation
(31) we have, Ay, ,v €N Sz,a. So it follows from equation 37 that

(38) Az v € TSg,

for all v € NSZ,b"Ya.b(O) NYses,

To prove the formula Aj, ,v = —¥,,4, it remains to verify that the
components of A;, v in directions z € HS? N (§4,0(0))+ are 0. So we
compute

(Axya'b’l),l') = —(’U,A:Ya,bl') =0.

The last equality is a consequence of (34), the fact that z is perpendic-
ular to 4,4(0), and that the restriction of z — Ay, (0)Z tO HSZI%,,,(O)
Is an isometry onto its image. Thus we conclude that

(39)
A5, 4(0)V = —Va,a, and hence that A5 ,yw = Agﬂ HOW

for all w € V515|7a,b(0) N(TSH)*.
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Given a unit vector v € VSISI,ya’b(O) N NSZ,b let V' be the field of
images of the tangent field of ¢ — exptv under the dy/(v,5)o’s. As
pointed out in (18) V|, , is the Jacobi field with initial conditions

J(O) = v and JI(O) = A;ya'b(o)’l}.

Therefore it follows from (39) that the values of V would be no different
if we had defined it via the holonomy displacement maps for II; (rather
than II).

We also see that (J'(0), J(0)) = 0 and by (39) ||J(0)|]| = |}J'(0)|| = 1;
$0

(40) J(t) = cos tP,(J(0)) + sintP,(J'(0)),

where for z € TS;f,b(o)’ Py(z) is the parallel image of z along .4 at
Yap(t). Since J(0) and J'(0) are both in NS];, we get from (40) that
Viy,o(t) = J(t) € NS, for all ¢.

Let V"S5 denote the vertical bundle for the Hopf fibration. Then

since v can be any vector in N(S7 ;). , ) we have

(41) NSL,nV"s® = NST, NS,
and the fibers of each of these bundles are 4-dimensional. Therefore
(42) VS| ST, = VS, ® (NSL,NVS™),

and it follows that H,  is horizontal. So assertion 2 is proved.
Setting VhSZ,b =Vrsiin TSZ,,,, we also have

(43) VISP = VS, @ (NS, NVHS™).
Since [Xg4, V] = 0 and S , is totally geodesic, (42) implies
(44) Ty Aas = (VvXap) = (Vi,, V)" € NSL,
From (41), (42), and (43) it follows that the right hand-side of (44)
equals T&"ya,b, where T" is the T tensor of II,. Since Th = 0, and

Vlha,(t) can be any vector in NS7 , N VS, we have

(45) Tv'ya,b =0
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for all v € NST, NVS™S, Combining this with Assertion 2 we get
(46) Tyap = 0
for all v € VS'®|, ,, and hence

(Tuwy;)'a,b> = _<waTu;)’a,b> =0

for all v,w € VS lve5- Combining this and (46) with equation (7)
yields

(47) | Az pvll =1

for all unit v € VS|, ,. Using (47) and arguing as in the proof of
Lemma 9, we obtain

(48) 145,20 =1

for all horizontal unit vectors x along 7,4 which are perpendicular to
Ya,b- Combining (48) with the equation for horizontal curvatures we
conclude that all radial sectional curvatures along II(v, ;) are equal to
4. Therefore if c,p is any horizontal lift of II(v,p) (not necessarily
contained in S7 ,),
(49) |z, ol =1
for all unit v € VS|, .

Combining (49) with (18) shows that the images of any unit vector
v e VSIS ) under the di(c,)0,¢’s are given by a Jacobi field J with ini-

Ca
tial conditions that satisfy (J'(0), J(0)) = 0 and [|J(O)]| = [I77(O)]] = 1;
so as before J(t) = cos tP(J(0))+sin tP;(J'(0)), where for w € TS’cljb(O),
P;(w) is the parallel image of w along c,p at cp(t). In particular
|J]] = 1; so all of the 9}y +’s are isometries, and all of the points in H(S’Z,b)
are good. By Assertion 2 and Lemma 8, II(S7 ;) is totally geodesic and
isometric to S*(%). Since it intersects Gy orthogonally, it follows from

the main lemma that every point in V is good. g.e.d.

5. The nonsimply connected case

Let M satisfy the hypotheses of Theorem 4. As we indicated in the
introduction the classification theorem in [8] applies to M. In particular,
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we know that M is either isometric to a space form or the quotient of
CP%*-1 in Theorem 4.(ii).

Suppose M is a space form, O is an orbit of the action of I" on S7,
and p : " — M is the universal covering map. Since rad M = F, we
can find a dual pair (A4, A’) in M with p(O) € A. Since A is totally =-
convex 50 is A = p~1(A). Since JA = 0 (2.5, 3.4, and 3.5 in [8]), A = 0.
A is therefore a I-invariant great subsphere of S” that contains O.

On the other hand, if /T is a space form and an orbit O of I is
contained in a proper, invariant, totally geodesic subsphere, S*, then
A(S*¥) = {z € S™ | dist(z,S*) = T} is also invariant. Therefore, if
every orbit of I is contained in a proper, invariant, great subsphere,
then dist(p(0), p(A(S%))) = Z,and rad S™/T' = Z.

To complete the proof of Theorem 4 it remains to show that the
space in (4., ii) has radius = . The orbit of an arbitrary point for the
corresponding action on §%¢~1 is

(z17z27 A 7z2d) H(Ed+1, . ,E2d, _El? AR *Ed)
r—)(—zl, cee s Rdy —Rd41s e - ,—sz)
r—)(—'Zd_l,l, cee 3y =224y R1y - - ,Ed) — (21,22, cen ,sz).

Thus each orbit (in $%¢~1) is contained in an invariant geodesic that
is perpendicular to the fibers of the Hopf fibration S! — §4¢-1
CP?1, Tt follows that each orbit in C P?¢~! is contained in an invari-
ant geodesic. If v : [0,7] — CP?*¥! is an invariant geodesic, then
(image(y))' is also invariant (and # § since d > 2). So the radius of the
quotient is 7. q.e.d.

Now we focus on the proof of (5).

Proof of (i). Let p: ' — O(n + 1) be a fixed point free represen-
tation that respects an orthogonal splitting V), ® V3 @ - -- @ Vj, of R**!
so that p|y; is irreducible for all i. It follows from Theorem 7.2.18 in
[27] that dim V; = dim V(= d) for all i,j. Suppose rad S™/p(T') = 5.
Then using Theorem (4, i) we can first find a proper, invariant subspace
that is not a direct sum of V;’s and an irreducible invariant subspace
W that is distinct from all of the V;’s. The orthogonal projections
pi + W — V; are all p-equivariant, so by Schur’s Lemma, they are
either zero maps or isomorphisms. If they are all zero maps, then we
have WC (VieVe®--- @ Vk)l, which is impossible. So at least one of
the projections (say p;) is an isomorphism. If all of the other p;’s are
zero maps, then we have W C (Vo @+ - ® Vi)*, which would imply that
W = Vi, also impossible. So at least one other projection (say p2) is an
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isomorphism. Thus p|w is linearly (and hence orthogonally by Lemma
4.7.1 in [27]) equivalent to both p|v, and ply;.

Proof of (i). By (iv) it suffices to consider the case k¥ = 2. In this
case the action of p(I") on S® is orthogonally equivalent to a subac-
tion p(T") of the Hopf action, and the Hopf fibration S — S§% — §?
induces a Riemannian submersion S! — $3/p(I') — S%(3). Thus
rad S*/p(T) = rad S3/p(T) > rad S*(3) = Z.

Proof of (iii). Suppose there are points u,v € 4! and members

91,92;- -+ 1y 9d; 9d+1 of T'" so that {gl(U),QQ(’U/), ,gd(U)} and
{91(v),g92(v),... ,ga(v)} are linearly independent and such that the sets

of coefficients {a;}, {b;} so that

aig1(u) + - - + aq9q(u) = gg+1(u) and
b1g1(v) + -+ + bgga(v) = ga+1(v)

are distinct. It follows that the vector %gd_,_l(u,v) in R? is not in
the span of {%gl(u,v), %gQ(u,v), . %gd(u, v)}. On the other hand,
{%gl(u,v), %w(u,v), . %gd(u,v)} is linearly independent since its
projection onto R? x {0} is {‘\}“591“’ %ggu,...%gdu}. Therefore the

set 1 1 1 1

{Egl (U, ’U), 392('“'7 ’U), cee Egd(u’ ’U), Egd+1(ua ’U)}
is linearly independent, and we are done by Theorem 4 (i), provided we
can find u,v, and g1,92,...,94+1 as above. But according to [27], the

image of every irreducible representation of a fixed point free, nonabelian
group [" contains matrices of the form

2mikr
e m
A=
2rikr(4/2)~1
(50) \ e m )
and B = : o ,
0 1

o
B
~
=
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where k,I,m,n' and r are as in Theorem 5.5.6 in [27], ‘z—i plays the role
of d in [27, Theorem 5.5.6], and we have used complex coordinates. So
it suffices to set v = (1,0,...,0), v = (0,1,0,...,0), g1 = Id, g2 =
A,93 =BA,gs = ABA,... ,g441 = (BA)%. (Note that d is even.)

To quickly see that there are matrices of the form (50) in the image of
every irreducible representation of a fixed point free, nonabelian group,
note that such matrices are in the image of every such representation
of a so called “group of type 17 (Theorem 5.5.6 and 5.5.10 in [27]) and
that other nonabelian fixed point free groups contain groups of type 1
as subgroups [27, p. 204-208] . q.e.d.

Proof of (iv). View S™*4(1) as the join S™(1) * §471(1), and view
p D o as the join of p and o. Then every orbit of p & ¢ is contained in
the join of an orbit of p with an orbit of 0. Since the orbits of p are
all contained in proper invariant totally geodesic subspheres of S”, the
orbits of p ® o are contained in the joins of proper great subspheres of
S™ with §9-1

g.e.d.

Proof of (uv). For example, if & is so large that the order of I is less
than n + 1, then every orbit is automatically contained in an invariant
subspace. q.e.d.
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